C. VIGOR Analog Input VS-4A-EC
 Analog Input and Output Expansion Card

Forward

The VS-4A-EC Analog Input/Output Expansion Card can receive 2 channels of external voltage or current signal inputs then convert the analog signals to 12 -bit digital values. When the END instruction is executed, the VS Main Unit reads out AD conversion data from the VS-4A-EC card and stores the values to respective EC card registers. Thus, it provides the reference data for digital monitoring or controls. In addition, this card can generate 2 channels of external voltage or current signal outputs, those are by way of to convert the sources of 12 -bit digital set values. When the END instruction is executed, the VS Main Unit sends out source data to the VS-4A-EC card and stores the values to respective EC card registers then its DA circuit converts the data to analog outputs. Thus, it provides two analog signal outputs from digital set values to control the external loads.
The VS-4A-EC Analog Input and Output Expansion Card is non-isolated. Please read following instructions before use.

Component Designation

Card Weight (N.W./ G.W.): $40 \mathrm{~g} / 75 \mathrm{~g}$

Specification

Basic Specification

Item	Specification
Power Consumption	DC5V 20mA, DC12V 60mA (from PLC Main Unit)

Analog Input Specification

Item	Voltage Input Spec.	Current Input Spec.	
	The voltage or current input switch is located on the card's bottom also the operation mode special register is required to set.		
Analog Input Range	0~10V	$4 \sim 20 \mathrm{~mA}$	0~20mA
Converted Value	0~4000	0~3200	0~4000
Input Resistance	200Kת	250Ω	250Ω
Max. Resolution	2.5 mV	$5 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$
Overall Accuracy	$\pm 1 \%$ Overall Max.		
Response Time	$1.2 \mathrm{~ms} \times(\mathrm{No}$. of enabled Al CH.$)+15 \mu \mathrm{~s} \times(\mathrm{No}$. of enabled AO CH. $)$, the $\mathrm{Al} / \mathrm{AO}$ values will be renewed or sent at the END instruction		
Isolation Method	No isolation between PLC and inputs; no isolation between input channels		
Max. Input Range	$-0.5 \mathrm{~V} \sim+12 \mathrm{~V}$	$-2 \mathrm{~mA} \sim+30 \mathrm{~mA}$	$-2 \mathrm{~mA} \sim+30 \mathrm{~mA}$
Conversion Curve Diagram			

Analog Output Specification

Item	Voltage Output Spec.	Current Output Spec.	
	The voltage or current output is selected by the EC card mode register, and those signals output through separate terminals.		
Analog Output Range	0~10V	4~20mA	0~20mA
Digital Set Range	0~4000	0~3200	0~4000
Load Resistance	$500 \Omega \sim 1 \mathrm{M} \Omega$	500Ω (Max.)	500Ω (Max.)
Max. Resolution	2.5 mV	$5 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$
Overall Accuracy	$\pm 1.5 \%$ Overall Max.		
Response Time	$1.2 \mathrm{~ms} \times(\mathrm{No}$. of enabled Al CH.$)+15 \mu \mathrm{~s} \times(\mathrm{No}$. of enabled AO CH. $)$, the $\mathrm{Al} / \mathrm{AO}$ values will be renewed or sent at the END instruction		
Isolation Method	No isolation between PLC and outputs; no isolation between output channels		
Conversion Curve Diagram			

To appoint the modes of analog inputs: (the sliding switch should also consistent with the modes)
 Null Null Al2 Al1 If the nibble $=2$, the channel is assigned for ($0 \sim 20 \mathrm{~mA}$) current input. To assign input modes
Example: If a VS-4A-EC is installed at the EC1, and its EC1D0 is set to be H 10 , then

AI1: voltage input ($0 \sim 10 \mathrm{~V}$) AI2: current input ($4 \sim 20 \mathrm{~mA}$)
To appoint the modes of analog outputs:

$\begin{array}{llll}\text { Null } & \text { Null } & \text { AO2 } & \text { AO1 }\end{array}$

If the nibble $=0$, the channel is assigned for ($0 \sim 10 \mathrm{~V}$) voltage output. If the nibble $=1$, the channel is assigned for $(4 \sim 20 \mathrm{~mA})$ current output If the nibble $=2$, the channel is assigned for ($(0 \sim 20 \mathrm{~mA})$ current output.
If the nibble is any number other than 0,1 or 2 , the channel is disabled. To assign output modes
Example: If a VS-4A-EC is installed at the EC1, and its EC1D10 is set to be H10, then
If a VS-AA-EC is installed at the EC1, and its EC1D10 is set to be
AO1: voltage output ($(\sim 10 \mathrm{~V})$ AO2: current output ($4 \sim 20 \mathrm{~mA}$)

*5: If a voltage/current ripple occurs at the signal input of the load device, please parallel connect a smoothing capacitor $(0.1 \mu \mathrm{~F} \sim 0.47 \mu \mathrm{~F}, 25 \mathrm{~V})$ between the input terminals to reduce the induced noise. Besides, ground the shield of the cable.
*6: For every analog output channel, either voltage or current output can be used but not both at the same time

Example Program

Assume that VS-4A-EC is installed at the EC2
Its Al1 is used for $0 \sim 10 \mathrm{~V}$ input, Al2 is used for $4 \sim 20 \mathrm{~mA}$ input. Input converted values of Al1~Al2 are sequentially tored at D100~D102
Its AO1 is used for $0 \sim 10 \mathrm{~V}$ output, AO 2 is used for $4 \sim 20 \mathrm{~mA}$ output. Output digital set values of AO1~AO2 are sequentially stored at D7000~D7001

Expansion Card Installation Guide

- Every VS Series Expansion Card has 2 black fix clips (upper \& lower), those have symbols and grooves.
 $\begin{array}{lll}\text { Fix clip moves left to } & \text { Fix clip moves right to } \\ \text { fasten card on PLC. } & \text { loosen card from PLC }\end{array}$
- To install an expansion card, firstly, slide both the fix clips to the right, and insert the card to EC Socket on the Main Unit, then slide the fix clips to the left to fix the card.
- To remove an expansion card from the Main Unit, must slide both the fix clips to the right first, then pull the card from the Main Unit out.

EC1	EC2	EC3	Component Description
EC1D0	EC2D0	EC3D0	To assign the input modes of Al1~Al2.
EC1D1	EC2D1	EC3D1	Converted digital value of Al1, $0 \sim 4000$ or $0 \sim 3200$.
EC1D2	EC2D2	EC3D2	Converted digital value of Al2, $0 \sim 4000$ or $0 \sim 3200$.
EC1D10	EC2D10	EC3D10	To assign the output modes of AO1~AO2.
EC1D11	EC2D11	EC3D11	Digital set value for of AO1, 0~4000 or 0~3200.
EC1D12	EC2D12	EC3D12	Digital set value for value of AO2, 0~4000 or 0~3200.
EC1D18	EC2D18	EC3D18	Identification code: K103 (If get K240, that means the EC card cannot be connected.)
EC1D19	EC2D19	EC3D19	The version number of this card. (the content value XX indicates Ver. X.X)

EC Card Register (Simple Code) Related to VS-4A-EC

